On the properties of the combinatorial Ricci flow for surfaces

نویسنده

  • Emil Saucan
چکیده

We investigate the properties of the combinatorial Ricci flow for surfaces, both forward and backward – existence, uniqueness and singularities formation. We show that the positive results that exist for the smooth Ricci flow also hold for the combinatorial one and that, moreover, the same results hold for a more general, metric notion of curvature. Furthermore, using the metric curvature approach, we show the existence of the Ricci flow for polyhedral manifolds of piecewise constant curvature. We also study the problem of the realizability of the said flow in R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW

The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...

متن کامل

Combinatorial Ricci Flows on Surfaces

We show that the analogue of Hamilton’s Ricci flow in the combinatorial setting produces solutions which converge exponentially fast to Thurston’s circle packing on surfaces. As a consequence, a new proof of Thurston’s existence of circle packing theorem is obtained. As another consequence, Ricci flow suggests a new algorithm to find circle packings.

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

N ov 2 00 2 Combinatorial Ricci Flows on Surfaces

We show that the analog of Hamilton's Ricci flow in the combinatorial setting produces solutions which converge exponentially fast to Thurston's circle packing on surfaces. As a consequence, a new proof of Thurston's existence of circle packing theorem is obtained. As another consequence, Ricci flow suggests a new algorithm to find circle packings. §1. Introduction 1.1. For a compact surface wi...

متن کامل

Problems around 3–manifolds

This is a personal view of some problems on minimal surfaces, Ricci flow, polyhedral geometric structures, Haken 4–manifolds, contact structures and Heegaard splittings, singular incompressible surfaces after the Hamilton–Perelman revolution. We give sets of problems based on the following themes; Minimal surfaces and hyperbolic geometry of 3–manifolds. In particular, how do minimal surfaces gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1104.2033  شماره 

صفحات  -

تاریخ انتشار 2011